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Abstract
The results of parallel kinetic Monte Carlo (KMC) simulations of the room-temperature coarsening
of Ag(111) islands carried out using a very large database obtained via self-learning KMC
simulations are presented. Our results indicate that, while cluster diffusion and coalescence play an
important role for small clusters and at very early times, at late time the coarsening proceeds via
Ostwald ripening, i.e. large clusters grow while small clusters evaporate. In addition, an asymptotic
analysis of our results for the average island size S(t) as a function of time t leads to a coarsening
exponent n = 1/3 (where S(t) ∼ t2n), in good agreement with theoretical predictions. However, by
comparing with simulations without concerted (multi-atom) moves, we also find that the inclusion
of such moves significantly increases the average island size. Somewhat surprisingly we also find
that, while the average island size increases during coarsening, the scaled island-size distribution
does not change significantly. Our simulations were carried out both as a test of, and as an
application of, a variety of different algorithms for parallel kinetic Monte Carlo including the
recently developed optimistic synchronous relaxation (OSR) algorithm as well as the semi-rigorous
synchronous sublattice (SL) algorithm. A variation of the OSR algorithm corresponding to
optimistic synchronous relaxation with pseudo-rollback (OSRPR) is also proposed along with a
method for improving the parallel efficiency and reducing the number of boundary events via
dynamic boundary allocation (DBA). A variety of other methods for enhancing the efficiency of our
simulations are also discussed. We note that, because of the relatively high temperature of our
simulations, as well as the large range of energy barriers (ranging from 0.05 to 0.8 eV), developing
an efficient algorithm for parallel KMC and/or SLKMC simulations is particularly challenging.
However, by using DBA to minimize the number of boundary events, we have achieved significantly
improved parallel efficiencies for the OSRPR and SL algorithms. Finally, we note that, among the
three parallel algorithms which we have tested here, the semi-rigorous SL algorithm with DBA led
to the highest parallel efficiencies. As a result, we have obtained reasonable parallel efficiencies in
our simulations of room-temperature Ag(111) island coarsening for a small number of processors
(e.g. Np = 2 and 4). Since the SL algorithm scales with system size for fixed processor size, we
expect that comparable and/or even larger parallel efficiencies should be possible for parallel KMC
and/or SLKMC simulations of larger systems with larger numbers of processors.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Kinetic Monte Carlo (KMC) is an extremely efficient
method [1–6] to carry out dynamical simulations of non-
equilibrium processes when the relevant activated atomic-
scale processes are known. Accordingly, KMC simulations
have been successfully used to model a variety of dynamical
processes ranging from catalysis to thin-film growth. However,
in many cases it is difficult to calculate a priori all the possible
atomic-scale events which may be important in a simulation,
and so typically KMC simulations have relied on a relatively
limited rate catalog.

To address this problem, Rahman and coworkers have
recently developed a self-learning kinetic Monte Carlo
(SLKMC) method [7, 8]. In an SLKMC simulation, rather
than use a fixed catalog of processes and their corresponding
activation barriers, the activation barriers corresponding to
new configurations not already included in the database are
obtained on the fly. The resulting processes are then added
to the SLKMC database. By only determining events for
configurations which actually occur during the simulation, and
also using the symmetry of the lattice to reduce the number
of possible distinct configurations, this method may be used
to study a variety of different problems. As an example, in
recent SLKMC simulations [8] of Cu(111) island diffusion it
was found that, due in part to the inclusion of concerted moves
which play an important role for small islands, the dependence
of the diffusion constant on cluster size was quite different
from that obtained in previous simulations with a limited rate
catalog.

While KMC and SLKMC simulations can be effective
tools to carry out atomistic simulations of non-equilibrium
processes, often it is desirable to carry out simulations over
extended timescales and length scales. As a result, a number
of different algorithms for parallel KMC have recently been
studied and applied to simulations of thin-film growth. These
include the synchronous relaxation (SR) algorithm [9–11], the
optimistic synchronous relaxation (OSR) algorithm [12] and
the semi-rigorous synchronous sublattice (SL) algorithm [13].
In particular, it has recently been shown that the OSR algorithm
can provide a reasonable parallel efficiency in low-temperature
simulations of submonolayer nucleation and growth on metal
(111) surfaces. The semi-rigorous SL algorithm [13] has also
been shown to provide good parallel efficiency in simulations
of a variety of simplified models of nucleation and thin-
film growth. Due to the fact that it only requires local
communications, the SL algorithm also scales with system
size, e.g. for a fixed processor size the simulation time is
independent of the number of processors.

As a test of the applicability of such parallel algorithms
to simulations over extended timescales and length scales at
higher temperatures, here we present the results of kinetic
Monte Carlo simulations of the room-temperature coarsening
of Ag(111) clusters carried out using a large database obtained
via SLKMC simulations. As discussed in more detail below,

our results indicate that at late time the coarsening proceeds via
Ostwald ripening. We also find that the inclusion of concerted
(multi-atom) moves in our database has a significant effect
on the asymptotic coarsening. Our results also indicate that
the scaled island-size distribution does not change significantly
during coarsening.

We note that this work is part of a larger project to develop
parallel algorithms to carry out realistic SLKMC simulations
over larger timescales and length scales. Therefore, in addition
to presenting results for the coarsening of Ag(111) islands we
also present results for the efficiency and accuracy of a number
of different algorithms applied to Ag(111) island coarsening.
In particular, we discuss the optimistic synchronous relaxation
(OSR) algorithm, the optimistic synchronous relaxation
with pseudo-rollback (OSRPR) algorithm, the synchronous
sublattice (SL) algorithm, as well as a number of improvements
such as dynamic boundary allocation (DBA). We note that,
because of the very large range of event rates in these
simulations (ranging from 4 × 103 s−1 for double-bond
detachment from an island to 8 × 1010 s−1 for monomer
hopping), developing an efficient algorithm for parallel
KMC and/or SLKMC simulations is particularly challenging.
However, our results indicate that, by using the SL algorithm
along with dynamic boundary allocation to increase the cycle
time and thus reduce communication overhead, a reasonable
parallel efficiency can be achieved.

The organization of this paper is as follows. In section 2,
we first describe the database used in our simulations as well
as how it was obtained via SLKMC simulations. We also
describe minor modifications that we have made to the closed
database to improve the speed of our simulations. In section 3,
we describe the binary tree algorithm which was used to
maximize the efficiency of our KMC simulations. In section 4
we describe in detail the OSR, OSRPR and SL algorithms
used in our parallel KMC simulations along with the dynamic
boundary allocation (DBA) technique. Our results for the
parallel efficiencies of these three algorithms—as obtained in
simulations of room-temperature Ag(111) island coarsening—
are presented in section 5.1. Detailed results for the evolution
of the average island size and the scaled island-size distribution
are then presented in section 5.2. Finally, in section 6, we
summarize our results.

2. KMC database

Our database was obtained from self-learning kinetic Monte
Carlo simulations of Ag(111) island and cluster motion carried
out at 300 and 500 K and consists of two parts. The first part
is a large cluster database which was obtained from SLKMC
simulations of islands of 19 atoms and larger, i.e. clusters
typically consisting of a central atom and at least two filled
rings. For these large islands, we have found that, for
homoepitaxy, cluster diffusion typically occurs via a series of
single or multi-atom moves of edge atoms from fcc sites to
fcc sites. Accordingly, in this case the drag method was used
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Figure 1. Two-shell indexing around the central atom labeled 1.

for the associated saddle-point searches while all moves were
assumed to involve fcc sites5.

We note that, for large islands, we have found that these
approximations are adequate to describe island diffusion. In
particular, the scaling of the island diffusion coefficient with
the island size was found to be in excellent agreement with
previous determinations [7]. Hence, the first part of the
database was filled using studies of the diffusion of large
islands (i.e. periphery diffusion using drag method and fcc
occupation). All activation energies were determined using
interaction potentials based on the embedded-atom method
(EAM) as developed by Foiles et al [14].

While the third shell surrounding a central atom was
included in the SLKMC simulations when building the large
cluster database, in our KMC simulations only the first two
shells were used, since the third shell surrounding a central
atom has a relatively weak effect on the activation barrier.
Accordingly, the large cluster database corresponds, as shown
in figure 1, to the first two shells surrounding an occupied site
and contains approximately 2302 configurations (not including
symmetry) with approximately 4455 different ‘moves’ or
transitions including concerted moves. Figure 2 shows some
of the low-barrier moves included in this database.

The second part of the database was a small cluster
database obtained from SLKMC simulations of islands of less
than 19 atoms. In these small-island SLKMC simulations,
it was found earlier [8] that the three assumptions used
for large systems (periphery motion/drag/fcc) were unable to
describe mechanisms revealed by molecular dynamics (MD)
simulations of small islands on fcc(111). In particular, the
most important mechanisms for diffusion of small islands were
found (by MD) to be translation and rotation of the whole
island. Since the drag method involving periphery atoms
was unable to retrieve these two main mechanisms and others
5 In the drag method, the moving entity is dragged in very small steps toward
the probable (aimed) final state. The dragged atom is constrained in the
direction toward the aimed position while the other two degrees of freedom
(perpendicular to this direction) and all degrees of freedom of the rest of the
atoms in the system are allowed to relax. The other atoms are thus free to
participate in the move, thereby activating many-particle processes in which
neighbor adatoms start to follow the central leading atom. In connection with
the SLKMC method, the central atom is always dragged toward one of its
vacant fcc sites.

Figure 2. Two typical low-barrier moves in the large cluster database
along with the corresponding activation barriers Eb. The dark blue
atom corresponds to the central atom involved in the transition, while
the light blue and red atoms correspond to occupied sites in the first
and second rings, respectively. The third ring of atoms (orange) is
also shown.

involving collective motion, we proceeded by calculating their
barriers using the nudged-elastic band (NEB) method [15, 16]
and incorporating them into the SLKMC database. The last
hurdle was to overcome the hcp occupancy (seen in MD
simulations) since our SLKMC database involves only fcc
occupancy. Using the fact that, when a small cluster occupies
fcc sites it moves as a whole to hcp sites and then to fcc sites,
we described a sequence of fcc-to-hcp and hcp-to-fcc moves
as a single fcc–fcc move with a modified prefactor determined
using symmetry (degeneracy) factors [8]. Hence, the database
for small clusters was built by hand using NEB for mechanisms
revealed by MD simulations and involving collective motion
of the islands, in addition to moves involving periphery atoms
which were found using the drag method attached to SLKMC.

Since the small cluster database only involves clusters of
less than 19 atoms, it only involves configurations in which
there is a central atom surrounded by two partially filled rings
and an empty third ring. We note that our small cluster database
contains 50 configurations (not including symmetry) with 252
different ‘moves’ or transitions including concerted moves.
Figure 3 shows some typical small cluster transitions which
were included in this database.

In order to minimize the size of the database we have
also used the symmetry of the fcc(111) surface. In particular,
the following five symmetry operations were used: (1) 120◦
rotation, (2) 240◦ rotation, (3) mirror reflection, (4) mirror
reflection followed by 120◦ rotation and (5) mirror reflection
followed by 240◦ rotation. Thus, if a given configuration
was not found in the database, then the symmetry operations
mentioned above were performed and used to identify the
configuration in the database. Since our database is a closed
database, if the configuration is not found then no transition
is identified. Figure 4 shows an example of a 120◦ rotation
symmetry operation.

Thus, in order to find the possible transitions and their
corresponding rates for a given configuration corresponding
to an occupied central site and the surrounding rings, if the
third ring was unoccupied, we first searched the small cluster
database for a match for the first and second rings. If no
match was found, or if the third ring was not empty, we then
searched the large cluster database for a match. We note
that, to save time, instead of doing a search through each
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Figure 3. Some typical concerted moves in the small cluster
database. Color code is the same as in figure 2.

database, we instead stored the data in a two-dimensional
matrix with first (second) indices corresponding to the first
(second) rings. However, if no match was found for either of
the two indices, we then generated the (up to five) additional
symmetry representations for each of our two configuration
ring indices, in order to search for symmetry equivalents. Once
a configuration was identified as belonging to the database, the
possible moves and their respective barriers were added to our
KMC lists. However, if after searching both databases, the
configuration was not identified as part of the database, then
nothing was done.

Figure 5 shows a histogram of the energy barriers
corresponding to the 4712 processes (not including symmetry)
in both databases. As can be seen, the distribution is very wide,
covering activation energies as small as a few hundredths of an
eV and as large as 0.8 eV. Assuming a prefactor of 1012 s−1,
as was assumed in our simulations, this corresponds at room
temperature to rates ranging from 0.036 s−1 to approximately
8 × 1010 s−1.

3. KMC algorithm

In order to maximize the efficiency of our simulations we
have used a binary tree algorithm [6] combined with lists. In
particular, at the beginning of a simulation we scan through
the lattice and identify the configurations for every occupied
site to determine the corresponding moves and activation
barriers for each configuration. Based on this information we
create an array of lists, where each list corresponds to one of
the 4712 different possible mechanisms for activated events,
and contains all the central atom locations corresponding to
that type of event. The total rate for each type of move
(corresponding to the rate for that move times the number of
central atoms of that type) is calculated and placed at the ‘base’
of a binary tree. We then generate a random number (between
0 and the total rate for all events) and use the binary structure

Figure 4. Example of 120◦ rotation symmetry operation showing
two symmetry-related configurations (a) and (b).

Figure 5. Histogram of energy barriers in the combined large and
small cluster database (histogram width is 0.01 eV).

to efficiently select the list ‘type’ of the next move, while the
particular move is randomly selected from the selected list.
After each transition, the neighborhood of each changed site
is updated along with the associated lists as well as the total
rate and binary tree. This leads to a code which is efficient and
scales with system size.

We note that all our simulations were carried out using the
1.4 GHz Itanium Cluster at the Ohio Supercomputer Center
(OSC). By replacing a ‘standard’ KMC by one which uses a
binary tree with lists as described above, as well as replacing
a linear search through the database with a matrix as described
in section 2, we were able to significantly reduce the average
time per KMC step from 592.8 μs in our initial code to 24.6 μs.
For comparison, we note that, in a typical KMC with a small
number of different event types such as edge and/or corner
diffusion, the corresponding time is typically 6 μs or less.

4. Algorithms for parallel kinetic Monte Carlo

Because of the large range of energy barriers (0.04–0.8 eV) in
our database, as well as the relatively high temperature (room
temperature) of our simulations, it is difficult to develop an
efficient and accurate parallel algorithm. Therefore, before
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Figure 6. Schematic diagram of square decomposition for Np = 9.
Solid lines correspond to processor domains.

carrying out our parallel KMC simulations of coarsening we
have tested and developed several different parallel algorithms
in order to determine which is the most efficient. In particular,
we have studied a recently developed rigorous algorithm, the
‘optimistic synchronous relaxation’ (OSR) algorithm as well
as a modified version of this algorithm which we refer to
as ‘optimistic synchronous relaxation with pseudo-rollback’
(OSRPR). In addition, we have tested the recently developed
semi-rigorous synchronous sublattice (SL) algorithm. Finally,
to reduce the number of events corresponding to boundary
events between processors we have also developed a new
method, which we refer to as ‘dynamic boundary allocation’
(DBA). Below we discuss each of these methods and some of
the details of their implementation.

4.1. Optimistic synchronous relaxation (OSR) algorithm

One of the first rigorous algorithms for parallel discrete-
event simulations was the synchronous relaxation algorithm
developed by Lubachevsky [9]. We note that the application
of this algorithm to KMC simulations as well as its scaling
as a function of the number of processors Np has been
recently studied by Shim and Amar [11]. However, since this
algorithm is relatively complex and requires multiple iterations
for each cycle, Merrick and Fichthorn have recently developed
a similar but simpler algorithm which they refer to as optimistic
synchronous relaxation (OSR) [12].

Figure 6 shows a typical decomposition of a square
system into Np square regions, where Np is the number of
processors. Also indicated in figure 6 are the boundary and
‘ghost’ regions for the central processor, where the boundary
region is defined as that portion of the processor’s domain in
which a change may affect neighboring processors. Similarly,
the ghost region corresponds to that part of the neighboring
processors’ domains which can affect a given processor. Thus,
in general the width of the boundary and ghost regions must be
at least equal to the range of interaction.

As shown in figure 7, in the OSR algorithm in each
cycle all processors start with the same initial time and then

Figure 7. Time evolution of events for OSR and OSRPR algorithms
with G = 4. Dashed lines correspond to selected events, while the
dashed line with an X corresponds to an event exceeding tmin (see the
text). In OSR this event is discarded while in OSRPR this event is
added to the next cycle.

simultaneously and independently carry out KMC events in
their domains until either the number of KMC events reaches
a pre-determined fixed number G, or one of the events
corresponds to a ‘boundary event’, i.e. an event which modifies
the boundary region of the given processor and which can thus
affect events in neighboring processors. Defining the time for
the last event in each processor as tlast, a global communication
is then carried out to determine the time tmin corresponding to
the minimum of tlast over all processors. Each processor then
‘rolls back’ or undoes all KMC events which occur after tmin.
If there are no boundary events then the processors all move on
to the next cycle with the new starting time corresponding to
tmin. However, if tmin corresponds to a boundary event, then an
additional communication is needed to update the ghost and/or
boundary regions of all processors affected by the boundary
event.

We note that typically the OSR algorithm requires 2–
3 global communications each cycle, one to determine tmin,
another to determine if the event with tmin corresponded to a
boundary event, and a third to update the boundary regions
of the affected processors if there was a boundary event.
To reduce the number of global communications we have
encoded the processor identity as well as whether or not the
last event was a boundary event, along with the least advanced
time of each processor before doing a global communication
to determine tmin. This was done by replacing tlast with a
number whose most significant figures corresponded to tlast but
whose least significant figures contained information about the
processor ID and whether or not that processor had a boundary
event6. Thus, in our implementation of the OSR algorithm only
one global communication was needed if tlast corresponded to a
non-boundary event, while two communications were needed
if it was a boundary event.

6 In this method, the time each processor advances from its previous cycle
is multiplied by a very large number to form the integer part of the double
precision packed number. The ratio of the processor ID to the total number
of processors used Np is then added to the decimal part if there is a boundary
event in that processor. If there is no boundary event in that processor a decimal
number is added such that it does not correspond to any processor identity. In
our implementation the multiplying number was 1020, which leads to good
accuracy.
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Figure 8. Comparison between parallel results using the OSRPR
algorithm with square decomposition (Np = 4) and serial results for
a fractal model with D/F = 105 and G = 7.

We note that, in the OSR algorithm for a given
configuration, there is an optimal value of G which takes into
account the tradeoffs between communication time (which is
wasted if there are no boundary events) and rollbacks. While,
in general, an adaptive method could be used to attempt to
optimize the value of G from cycle to cycle, in practice we have
found it more efficient to simply use trial and error to find the
optimal fixed value of G for our simulation (see section 4.4).

4.2. Optimistic synchronous relaxation with pseudo-rollback
(OSRPR) algorithm

In the OSR algorithm each processor discards all KMC events
which occur after tmin. However, this is unnecessary if there
are no boundary events in any of the processors. Therefore, we
have considered a variation of the OSR algorithm (optimistic
synchronous relaxation with pseudo-rollback) in which, when
there are no boundary events in the system, those events that
would have been discarded are added to the next cycle. This
can reduce the loss of computational time due to undoing and
then ‘redoing’ events and thus enhances the computational
efficiency. As a test of the OSRPR algorithm, we have carried
out parallel simulations using this algorithm for a ‘fractal’
model of irreversible submonolayer growth in which only
monomer deposition and diffusion processes are included [11],
with Np = 4. As expected, there is excellent agreement
between serial and parallel results for the island and monomer
densities (see figure 8).

4.3. Synchronous sublattice (SL) algorithm

In order to maximize the parallel efficiency we have also
carried out simulations using the semi-rigorous synchronous
sublattice (SL) algorithm recently developed by Shim and
Amar [13]. To avoid conflicts between processors, in the SL
algorithm each processor domain is divided into subregions
or sublattices (see figure 9). A complete synchronous cycle

Figure 9. Schematic diagram of strip decomposition for Np = 2.
Each processor domain is subdivided into A and B sublattices.
Boundary and ghost regions for B sublattice of processor 1 are also
shown.

Figure 10. Time evolution in the SL algorithm. Dashed lines
correspond to selected events, while the dashed line with an X
corresponds to an event which is rejected since it exceeds the cycle
time τ .

corresponding to a cycle time τ is then as follows. At
the beginning of a cycle, each processor’s local time is
initialized to zero. One of the sublattices (A or B) is
then randomly selected so that all processors operate on
the same sublattice during the cycle. Each processor then
simultaneously and independently carries out KMC events in
the selected sublattice until the time of the next event exceeds
the time interval τ (see figure 10). The processors then
communicate any necessary changes (boundary events) with
their neighboring processors, update their event rates and move
on to the next cycle using a new randomly chosen sublattice.
We note that, in order to ensure accuracy, the cycle time must
typically be less than or equal to the inverse of the fastest
possible single-event rate in the system [13].

Since it only requires local communication, the scaling
behavior of the SL algorithm is significantly better than for the
OSR and OSRPR algorithms. As a result, it has been shown to
be relatively efficient in parallel KMC simulations of a variety
of models of growth [13, 17] and island coarsening [18]. In
addition, while it is not exact, in simulations of a variety of
models [13, 17, 18] it was found that, unless the processor size
is extremely small (smaller than a ‘diffusion length’) or the
cycle time is too large, there is essentially perfect agreement
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Figure 11. Example of square decomposition with DBA for system
size L = 512 (triangular lattice with periodic boundary conditions)
and Np = 4.

between the results of parallel simulations using the SL
algorithm and serial simulations. Furthermore, while the cycle
time must typically be smaller than the inverse of the fastest
possible single-event rate in the system [13], it has recently
been shown [18] that in simulations of coarsening significantly
longer cycle times can be used, thus decreasing the overhead
due to communications and increasing the parallel efficiency.

4.4. Dynamic boundary allocation (DBA)

One of the main factors controlling the efficiency of a parallel
KMC algorithm is the existence of boundary events, which can
lead to ‘rollback’ in the OSR algorithm and can decrease the
accuracy of semi-rigorous algorithms such as the SL algorithm.
A decrease in the number of boundary events can also
significantly increase the optimal value of G used in the OSR
and OSRPR algorithms and thus reduce the communications
overhead. In the case of the SL algorithm, such a decrease can
also allow the cycle time τ to be increased without sacrificing
accuracy, thus increasing the parallel efficiency.

As an example, edge diffusion near a processor boundary
can lead to a large number of boundary events. Thus, if a
processor or sublattice boundary passes near or cuts through
an island this can significantly reduce the parallel efficiency.
Accordingly, we have developed a method for dynamic
boundary allocation (DBA) which keeps the processor and
sublattice boundaries as far away as possible from islands.
In our DBA method, we start with a spatial decomposition
of the lattice using straight-line boundaries and use the
island center-of-mass to assign islands to each processor
or sublattice. We then use a ‘burning-algorithm’ starting
from each island boundary to determine the processor and/or
sublattice boundaries between islands.

Since atoms and islands can diffuse and/or grow during
a simulation, atoms will eventually move into the boundary
region and, as a result, the parallel efficiency will decrease.
To overcome this, DBA is carried out regularly (e.g. several
times per second of simulated time) to adjust the processor
boundaries. Figure 11 shows a typical square decomposition
with DBA for the case of island coarsening for a system size
L = 512 with four processors. As can be seen, the processor

Figure 12. The same as figure 11 but for strip decomposition into
sublattices with Np = 4.

Table 1. Comparison of efficiencies of parallel algorithms with
Np = 2 and L = 1024. The cycle time τ used for the SL algorithm is
given in parentheses. fR is the fraction of rollback events per cycle in
the OSR and OSRPR algorithms.

No DBA DBA

Algorithm PE G(τ) fR PE G(τ) fR

OSR 0.33 9 0.27 0.43 161 0.21
OSRPR 0.47 11 0.04 0.58 161 0.02
SL 0.52 (10−7 s) — 0.74 (10−6 s) —

boundaries are relatively convoluted but remain well away
from the island edges. A similar DBA decomposition is shown
in figure 12 for the case of sublattice strip decomposition with
four processors. We note that, in this case, there are eight
separate sublattices.

5. Results

5.1. Parallel efficiency results

Before presenting our results for island coarsening, we first
present our results for the parallel efficiencies of the OSR,
OSRPR and SL algorithms (with and without DBA) as
obtained from simulations of room-temperature Ag/Ag(111)
island coarsening (as described in more detail in section 5.2)
using our SLKMC-derived database. We note that, in each
case, the parallel efficiency (PE) was obtained using the
expression PE = tser/(Np tp), where tser is the time for a serial
simulation of the entire system (system size L = 1024), while
tp is the time for the corresponding parallel simulation where
Np is the number of processors.

Tables 1 and 2 summarize our results for the overall
parallel efficiency of the OSR, OSRPR and SL algorithms
obtained from coarsening simulations with and without DBA
for Np = 2 and 4. As can be seen, in contrast to previous
results using the OSR algorithm to study Ag/Ag(111) island
nucleation and growth at very low temperatures [12], in our
room-temperature simulations of Ag(111) island coarsening,
the PE of the OSR algorithm is generally low. In addition,
due to the increased cost for global communications as
well as the increased ratio of the boundary region to the
processor ‘core’ region, the PE decreases significantly with
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Table 2. Comparison of efficiencies of parallel algorithms with
Np = 4 and L = 1024.

No DBA DBA

Algorithm PE G(τ) fR PE G(τ) fR

OSR 0.14 7 0.53 0.25 151 0.45
OSRPR 0.22 7 0.28 0.41 151 0.05
SL 0.39 (10−7 s) — 0.60 (10−6 s) —

increasing Np. Our results also indicate that including pseudo-
rollback (OSRPR algorithm) leads to a significant increase in
the parallel efficiency although for the case Np = 4 the PE still
remains below 50%. However, in all cases we find that the SL
algorithm yields the highest PE due to its significantly reduced
communication overhead and relatively large number of KMC
events carried out during a given cycle time τ .

We now discuss the effects of DBA on the PE as well as
on the optimal value of G for the OSR and OSRPR algorithms.
We note that without DBA the optimal value of G for the
OSR and OSRPR algorithms is about 10 for Np = 2 and
decreases slightly with increasing Np. On the other hand,
with DBA the optimal value of G increases significantly
due to the significantly reduced number of boundary events.
However, despite the large increase in G, the improvement
of the PE for the OSR algorithm is only moderate due to the
significant fraction of rollback events fR. On the other hand,
the increase in the PE with DBA for the OSRPR algorithm
is quite noticeable since the fraction of rollback events is
significantly decreased.

We now consider the parallel efficiency of the SL
algorithm both with and without DBA. As already noted, in
parallel KMC simulations of island nucleation and growth
using the SL algorithm, the cycle time must typically be
smaller than the inverse of the fastest possible single-event rate
in the system [13]. More recently it was found [18] that, in
simulations of coarsening, significantly longer cycle times can
be used, thus decreasing the overhead due to communications
and increasing the parallel efficiency. As shown in figure 13, by
reducing the number of boundary events with DBA, the cycle
time can be made even longer without affecting the accuracy,
thereby improving the parallel efficiency significantly. Thus,
we find (see tables 1 and 2) that, due to the relatively low
communications overhead as well as the relatively long cycle
times, the PE for the SL algorithm is, in general, significantly
higher than for the OSR and OSRPR algorithms. Accordingly,
in our parallel KMC simulations of Ag(111) island coarsening
over extended times, we have used the SL algorithm with
Np = 4 and a cycle time τ = 10−6 s. We note that, with
these parameters, the average number of events carried out per
cycle per processor (ne � 76) was somewhat smaller than the
optimal value of G using the OSRPR algorithm.

5.2. Results for Ag/Ag(111) island coarsening

In order to test our parallel KMC algorithm and also to apply
the large database to a realistic problem, we have carried
out parallel KMC simulations of Ag(111) island coarsening

Figure 13. Comparison of results for the island density obtained
from coarsening simulations carried out using serial KMC with the
corresponding results obtained using the SL algorithm with DBA for
Np = 4 and τ = 10−6 s.

at room temperature. The initial configuration used in our
coarsening simulations (see figure 14(a)) was generated by
depositing θ = 0.1 ML at a deposition rate of 1 ML s−1

at 145 K. We then carried out parallel KMC simulations
of coarsening at room temperature for 400 s using the SL
algorithm with DBA and a cycle time of 10−6 s with Np =
4. In order to avoid finite-size effects our simulations were
carried out using a relatively large lattice size L = 1024,
while to have good statistics our results were averaged over
10 runs. We note that, if each run had been carried out using
serial KMC, it would have taken almost 5 weeks. However,
because of the use of parallel KMC the whole set of runs took
only 2 weeks. In order to study the coarsening behavior, the
island-size distribution Ns(θ, t) corresponding to the density
of islands of size s (where s is the number of atoms in an
island) at time t was measured along with the island density
N = ∑

s�2 Ns , monomer density N1 and average island size
S = ∑

s�2 s Ns/N .
Before presenting our simulation results, we note that, for

the case of 2D clusters on a surface, there are two particular
limiting regimes—Ostwald ripening [19, 20] and cluster
diffusion and coalescence [21–29]—in which the coarsening
is dominated by diffusion. In the case of Ostwald ripening the
islands are assumed to be immobile, while the coarsening is
mediated by a background density of diffusing atoms such that
islands bigger than a critical island size grow while smaller
islands shrink or evaporate. This results in power-law growth
of the average island size S(t) ∼ t2n where n = 1/3 [30, 31].
However, in the case of cluster diffusion and coalescence, if the
cluster diffusion coefficient D(s) decays as a power law with
island size s, i.e. D(s) ∼ s−x , then n = 1/2(1 + x) [21].
In this case, three different limiting cases are of particular
interest [22–28]—cluster diffusion due to periphery diffusion
(x = 3/2, n = 1/5), cluster diffusion due to correlated
evaporation/condensation (x = 1, n = 1/4) and finally cluster

8



J. Phys.: Condens. Matter 21 (2009) 084214 G Nandipati et al

Figure 14. Evolution of island morphology during room-temperature coarsening. Pictures correspond to 256 × 256 portions of a 1024 × 1024
system.

diffusion due to uncorrelated evaporation–condensation (x =
1/2, n = 1/3). Although asymptotically, one might expect
one of these processes to dominate, at intermediate times all of
these processes may play a role.

Figure 14 shows a typical example of the evolution of a
portion of the system starting from the initial configuration at
t = 0 and ending with the final configuration at t = 400 s. As
can be seen, during the annealing process there is a dramatic
change in the island morphology while the average island size
increases dramatically. In particular, the system evolves from
the small dendritic islands at t = 0 shown in figure 14(a) to the
much larger truncated-hexagonal islands at t = 400 s shown
in figure 14(f). These results for the island morphology are
consistent with previous work using a simplified KMC model
based on the same EAM potential for Ag, which indicates that
for this potential the A step edge is energetically favored over
the B step edge [32].

Figure 15 shows a log–log plot of the average island size
S(t) as a function of time. As can be seen, the effective
slope increases with time while a fit to the late-time region
indicates a coarsening exponent n � 0.47. However, if the
initial island size S(0) is subtracted, then as shown in the inset,
after an initial transient period the slope appears to approach
an asymptotic value (0.70) which is close to 2/3 and thus
corresponds to a coarsening exponent n � 1/3. Also shown
in figure 15 (dashed curve) are results for the average island
size starting with the same initial configurations but without the
inclusion of multi-atom or concerted events during coarsening.
As can be seen, while the asymptotic coarsening behavior is
very similar, the average island size is significantly smaller.
Thus, the inclusion of complex concerted moves in our KMC
database significantly increases the average island size.

In order to better understand the asymptotic coarsening
behavior we have also calculated the effective exponent

Figure 15. Average island size S(t) as a function of time (open
circles). The dashed line corresponds to simulations without
concerted motion. The inset shows a log–log plot of S(t) − S(0).

neff(t) [33] using the expression

neff(t) = ln[S(tf)/S(ti)]
2 ln(tf/ti)

(1)

where tf/ti � 2. Figure 17 shows a plot of neff as a function
of inverse average island size 1/S. As can be seen, a linear
fit to the data gives an asymptotic exponent neff(∞) = 0.72,
while a fit to the last three points gives neff(∞) = 0.66.
This suggests that the asymptotic exponent is indeed close to
1/3. We note that such an exponent is consistent with both
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Figure 16. Island and monomer (inset) densities as a function of
time.

cluster diffusion due to uncorrelated evaporation–condensation
and Ostwald ripening. However, a detailed analysis of our
simulations indicates that, while there is some cluster diffusion
and coalescence at early times, at later times there is very little
cluster diffusion. Instead, the coarsening appears to proceed
via evaporation–condensation, i.e. small clusters shrink while
larger clusters grow. Thus, in general, our results are consistent
with Ostwald ripening.

We note that, in recent parallel KMC simulations of
coarsening using a simplified bond-counting model [18],
Ostwald ripening was also observed, although in this case an
exponent of 1/3 was obtained directly from the late-time slope
on a log–log plot of average island size S(t) as a function
of annealing time t . In this case, it was also noted that the
effective value of the coarsening exponent n on such a plot did
not approach 1/3 until the monomer density was larger than
the island density, while for earlier times the effective exponent
was close to 1/4. We note that such a condition is reasonable,
since only when the monomer density is significantly larger
than the island density can one think of the islands as being in
quasi-equilibrium with a gas of monomers.

In order to determine if such a late-time regime has been
reached in our Ag/Ag(111) island coarsening simulations, we
have measured both the island and monomer densities as a
function of time as shown in figure 16. We note that the
monomer hopping rate in our simulations (Dm = 8×1010 s−1)
is sufficiently large, while the adatom-island detachment rate
is significantly lower than Dm (Ddetach � 2.2 × 10−4 Dm)
and thus most of the time there are no monomers in the
system, and instead the main processes are edge diffusion
and island rearrangement. Accordingly, to accurately measure
the monomer density, we instead measured the number of
monomer hopping events over an extended time interval of
10−3 s, and then divided this number by the product of this
time interval and the monomer hopping rate. As can be seen the

Figure 17. Effective coarsening exponent neff as a function of 1/S.

monomer density is significantly lower than the island density,
thus indicating that we have not yet reached the asymptotic
regime. However, the slower decay of the monomer density
indicates that, at large enough times, the monomer density will
indeed be larger than the island density. These results also
support our conclusion that, even though the asymptotic regime
has not yet been reached, the coarsening is due to evaporation–
condensation mediated by monomer diffusion.

We now consider the time evolution of the scaled island-
size distribution (ISD) given by [34]

f (s/S) = Ns (t)S2/θ. (2)

Figure 18 shows our results for the scaled ISD at t = 0, along
with results at later times. Somewhat surprisingly, we find that,
even though the average island size increases significantly, the
scaled ISD has very little dependence on time. This result
is also in strong contrast to our previous study of a bond-
counting model in which the asymptotic coarsening behavior
was observed, while the scaled ISD was found to broaden and
become less sharply peaked in the asymptotic regime. We note
that this independence of the scaled ISD on time is consistent
with recent experiments on room-temperature annealing of
Cu/Cu(100) islands [35], in which the scaled ISD was also
found not to change during the coarsening process. We believe
that this independence of the ISD on annealing time is again
due to the fact that we have not yet reached the asymptotic
regime.

5.3. Analysis of energy barriers

In order to gain more insight into the dominant processes
during coarsening we have also analyzed the frequency of
events as a function of energy barrier. Figure 19 shows a
histogram of the energy barriers for all events carried out
during the first 100 s of coarsening. Somewhat surprisingly,
we find that the energy barriers for the most frequently
selected processes are spread over a relatively wide range of
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Figure 18. Scaled island-size distribution at four different times
during coarsening.

Figure 19. Histogram of energy barriers of selected events during the
first 100 s of coarsening. Histogram width is 0.01 eV. The inset
shows the same results on a semi-log scale.

values ranging from 0.06 to 0.5 eV, while the barrier for the
most frequently selected event is approximately 0.26 eV. The
inset of figure 19 shows the same data on a semi-log plot
and indicates even more clearly that the energy barriers for
selected events correspond to a broad distribution. Figure 20
shows the four most frequently selected moves other than
monomer diffusion (which has a barrier of 0.066 eV) during
the first 100 s of simulation. As can be seen the most
frequently selected event corresponds to corner-rounding, with
a barrier of approximately 0.07 eV. However, the next two
most frequently selected events correspond to edge diffusion
(see figures 20(b) and (c)) and have significantly higher energy
barriers (0.26 eV). We also note that detachment from a

Figure 20. Configurations and energy barriers corresponding to the
four most frequently selected events during the first 100 s of
coarsening.

kink shown in figure 20(d) occurs quite frequently despite
its relatively high energy barrier (0.472 eV). However, it also
leads to rapid reattachment to the kink site (with a much lower
energy barrier of 0.253 eV), as shown in figure 20(b). Thus,
our results indicate that a variety of different processes with a
wide range of energy barriers may play an important role in
room-temperature island coarsening.

6. Conclusion

As a test of the applicability of parallel algorithms to
realistic simulations over extended timescales and length
scales, we have presented the results of kinetic Monte Carlo
simulations of the room-temperature coarsening of Ag(111)
islands carried out using a large database obtained via
SLKMC simulations. Our results indicate that, while cluster
diffusion and coalescence play a role for small clusters and
at very early times, at late time the coarsening proceeds via
Ostwald ripening, i.e. large clusters grow while small clusters
evaporate. In addition, an asymptotic analysis of our results
for the average island size as a function of time leads to
a coarsening exponent n = 1/3 in good agreement with
theoretical predictions for this case. By comparing with
simulations without concerted (multi-atom) moves, we also
find that the inclusion of such moves significantly increases
the average island size. Somewhat surprisingly we also find
that, while the average island size increases significantly during
coarsening, the scaled island-size distribution does not change
significantly.

In addition to presenting results for the coarsening of
Ag(111) islands we have also presented results for the
efficiency and accuracy of a number of different parallel
algorithms. In particular, we have presented results for
the optimistic synchronous relaxation (OSR), optimistic
synchronous relaxation with pseudo-rollback (OSRPR) and
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semi-rigorous synchronous sublattice (SL) algorithms, as well
as a number of improvements such as dynamic boundary
allocation (DBA). Because of the relatively high temperature
of our simulations, as well as the large range of energy barriers
present in the database ranging from 0.05 to 0.8 eV, developing
an efficient algorithm for parallel KMC and/or SLKMC
simulations was particularly challenging. However, by using
dynamic boundary allocation (DBA) to minimize the number
of boundary events, we have achieved significantly improved
parallel efficiencies for the OSRPR and SL algorithms. In
particular, the optimal value of G increased significantly for
both the OSR and OSRPR algorithms due to the significantly
reduced number of boundary events. However, there was a
negligible improvement in the parallel efficiency for the OSR
algorithm due to the significant fraction of rollback events.
Finally, we note that, among the three parallel algorithms
which we have tested, the semi-rigorous SL algorithm with
DBA led to the highest parallel efficiencies. As a result,
we have obtained reasonable parallel efficiencies in our
simulations of room-temperature Ag(111) island coarsening
using this algorithm for a moderate number of processors
(e.g. Np = 2 and 4). Since the SL algorithm scales
with system size for fixed processor size, while the parallel
efficiency increases with increasing processor size, we expect
that comparable and/or even larger parallel efficiencies should
be possible in parallel KMC and/or SLKMC simulations of
larger systems with larger numbers of processors.

In conclusion, we have carried out realistic parallel
KMC simulations of Ag(111) island coarsening using a large
database obtained from SLKMC simulations and tested the
parallel performance of the OSR, OSRPR and SL algorithms
with and without DBA. We find that the SL algorithm
with DBA yields the highest parallel efficiency due to the
significantly increased cycle time, and also exhibits the best
scaling behavior as a function of the system size and number
of processors. However, the parallel efficiency for the OSRPR
algorithm with DBA is also quite reasonable for a relatively
small number of processors, suggesting that this algorithm may
also be useful in a variety of parallel KMC simulations. Finally,
our coarsening simulation results indicate that, while cluster
diffusion and coalescence play a role at early and intermediate
times, at late times the coarsening appears to proceed via
Ostwald ripening.
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